

Alleima

Fine medical wire, nitinol solutions, wire-based components and micro-tubes for medical applications

Your partner for life-changing medical solutions

Innovation and inspiration to advance your designs

Ready to make a life-changing difference? Choose fine medical wire, nitinol solutions, wire-based components or micro-tubes for your application and let decades of expertise and innovation take your design to the next level.

Alleima develops, manufactures and refines fine medical wire specifically for medical devices. Alleima is also an expert in processing nitinol. You can be sure of ultra-high quality across the entire value chain.

From idea to implementation

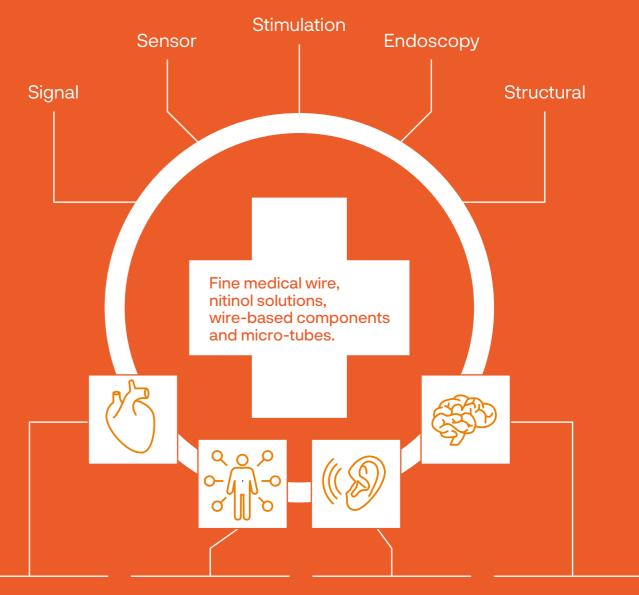
Creativity is key to your design. As an integral part of your research and development journey, we can help you imagine and implement innovative solutions to solve tomorrow's medical needs.

Agility matters, too. Our deliberately lean initiatives increase quality and decrease variability throughout the design process. And through a responsive, comprehensive design partnership with you, together we can conceive - and expertly create utterly unique processes and products.

Meltshop to medical

Advances. Adaptations. At Alleima they happen fast. And as we have strict control over our entire supply chain, that agility comes hand-in-hand with quality.

What makes fine medical wire products ultra-high quality? The answer starts with the diamond dies. Fach one crafted with painstaking attention to detail



You will notice the same ultra-high standards in our products as in our support. At every step of your design and manufacturing process, we add value. From precision tolerance coating to multi-filar micro cables, our impact doesn't stop with supply. That's iust the start.

Examine the medical solutions of the future and you will find fine medical wire in many of them. Thanks to its unique properties, we are already in close partnership with OEMs and universities, enhancing tomorrow's product development. Bring your vision to us and let's explore the possibilities together.

Quality of life. Where will you improve it?

Just some of the areas we're already adding value

Cardiology Wire for heart solutions, including

Endoscopy and remote monitoring

and super-elastic nitinol solutions mini

Cochlear remediation

Solutions for middle ear implants fo

Neurology

Progressive resources for tomorrow's medical needs

The extensive medical wire range serves even the most demanding medical challenges. Stainless steels. Precious metals. Biocompatible alloys, such as cobalt-chromium (CoCr) alloys and nitinol. Over 200 different alloys as standard, as well as custom-made alloys, created on request. To discover our entire material portfolio, visit www.alleima.com/wire or talk to your Alleima contact. For more information about nitinol please go to page 17.

Some of the most commonly used medical application alloys:

Primary Alloys

Medical grade/stainless steels MP35N™

MP35N™ Composite Wire 304V

316LV

Alleima® 11R51 / 11R51HV (EN 1.4310) Alleima® 12R10 / 12R10HV (EN 1.4310) Alleima® 1RK91 (ASTM A693, F899)

Precious metals

Gold Silver Platinum Platinum Iridium Platinum Tungsten Gold Plated Copper Platinum Clad Tantalum

Alloys

Constantan Copper

Kanthal® Resistance Alloys

Nikrothal® 80 80%Ni/20%Cr Nikrothal® 60 60%Ni/16%/balance iron

Nikrothal® 40 35%Ni/20%/2% silicone balance iron

Nikrothal® LX 20%Cr/75%Ni

Kanthal® A-1 22%Cr/5.8%Al/balance iron Kanthal® AE 22%Cr/5.3%Al/balance iron Kanthal® AF 22%Cr/5,3%Al/balance iron Kanthal® D 22%Cr/4,8%Al/balance iron Alkrothal™ 15%Cr/4.3%Al/balance iron Cuprothal® 49 44%Ni balance copper Cuprothal® 30 23%Ni balance copper Cuprothal® 15 11%Ni balance copper Cuprothal® 10 6%Ni balance copper Cuprothal® 5 2.2%Ni balance copper Nifethal™70 30%Ni/balance iron Nifethal™36 36%Ni/balance iron

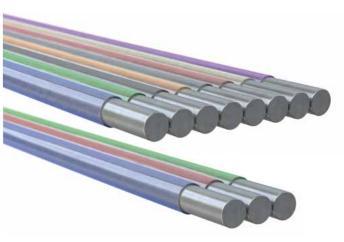
Custom wire for unique applications

Single Wire Configurations

All alloys can be provided in single strand form, with or without coating, and plated with custom thicknesses of gold or nickel.

Multilaver including Bond Coating

Electroplated and Polymer Finish


Multilayer including Bond Coating. Round, Flat, Square Wire Configurations.

Pure PTFE Coating

Multi-Filar Arrangements

Single strand wire configurations can also be formed into multi-filar or microcable arrangements.

A vital part of our service is value-added coiling. Take, for ex-

ample, lead finishing, where wire is both stripped and formed.

Multi-Filar Configurations

Cable Configurations

Single strand and multi-filar cables can then be manipulated into different cable configurations. Coatings, such as PTFE or polymer can be applied to any cable arrangement.

Stranded Coated Wire

Coated Finished Cable

Stranded Coated Wire With Overcoat Finish

Stranded Bare Wire

Twisted Multi-Filar Cables



PTFE Coils

Free-Standing Coils

These are some of the most popular custom wire solutions. To discover our entire material portfolio, visit www.alleima.com/wire or talk to your Alleima contact.

Round, flat, square and rectangular wire

		Sizes		Tolerance		
		01265				
	inch	mm	inch	mm		
Wire	0.0002 to 0.040	0.100 to 1.0	±0.00005	±0.00127		
Fine wire	0.0004 to 0.004	0.010 to 0.100	±0.000025	±0.000635		
		Thickness		Tolerance		
	inch	mm	inch	mm		
Square and rectangular, brite or coated, supplied on spools	0.00075 to 0.20	0.019 to 0.510	±0.00005	±0.00127		
	0.002 to 0.120	0.051 to 3.05	±0.0005	±0.00127		
	Fine wire Square and rectangular, brite or coated,	Fine wire 0.0004 to 0.004 inch Square and rectangular, brite or coated,	wire 0.0002 to 0.040 0.100 to 1.0 Fine wire 0.0004 to 0.004 0.010 to 0.100 Thickness inch square and rectangular, brite or coated, 0.00075 to 0.20 0.019 to 0.510	wire 0.0002 to 0.040 0.100 to 1.0 ±0.00005 Fine wire 0.0004 to 0.004 0.010 to 0.100 ±0.000025 Thickness inch mm inch Square and rectangular, brite or coated,		

8

Electroplating or anodizing are other type of surface treatments that allow us to support our customers in making cutting edge medical products.

Electroplating and electro polishing

Our production unit in Sonceboz, Switzerland, has state-of-the-art electroplating capabilities. We can apply one or several metallic coatings to improve characteristics such as electrical properties, acid resistance, or aesthetic appearance. We offer barrel and rack plating for parts and reel-to-reel plating of wire.

Simple in its concept, electroplating allows manufacturers to add a thin layer of metal to a component built from another material.

With our ability to electroplate micro components, we can make state-of-the-art metallic coatings on tiny parts. The typical deposit thickness range is 5 to 50 micro-in (0.13 to 1.3 microns).

For more information please visit our website www.alleima.com/plating

Anodizino

Alleima also offers a reel-to-reel electrolytic passivation process for aluminium alloys to increase the natural oxidation layer for enhanced dielectric behaviour. The anodized layer provides the benefit of hardening the surface for better abrasive wear, when necessary for the application. The typical thickness of the anodized layer is 0.0002 to 0.0004" (0.005 to 0.010 mm). The anodization process can be applied to round wire as well as ribbon wire.

We also offer coloured anodization from titanium oxide, which is homogeneously applied all over the piece. Our finishing allows production of several tones and perfect repeatability. Approximately 30 colours are available.

Coating

The key to end-performance success.

The right coating for medical-grade wire can make or break product design. Identifying the best coating is a balancing act of engineering and chemistry, testing even the most experienced design team. And while off-the-shelf solutions exist, they rarely consider downstream impacts, product performance, manufacturability and real costs.

But choose Alleima and you'll be working with coating experts. Our experts are busy developing, testing and manufacturing coatings and surface modifications specifically for cutting-edge medical products and unique functional devices. Day in. Day out.

PTFE Coating

We offer PTFE coating capabilities. PTFE coating can be applied to any medical grade in the size range 0.001–0.03 in (0.025–0.76 mm). Alleima provides PTFE-coated wire with coating thickness from 0.0001 to 0.0010 in (0.0025–0.025 mm). Clear, Green and Blue finishes are standard. Other colors can be offered on request.

Coating materials

Coatings for use as permanent and temporary implant

Polyurethanes Polyesterimide PTFF

FFP

Nylon (top coat)

Polyamide-imide

Polyesters

Polyimide

LARC SI Polyimide

Thermal bondcoats

Thermoplastic coatings for bonding wires together as multi-filar or free standing coils

Thermoplastic Polyvinyl Butyral Thermoplastic Epoxy Thermoplastic Polyamide Thermoplastic Polyamide-imide

Our long experience in the production of wires allows us an upstanding fine tube manufacturing. In addition to various stainless steels, which are principally used in medical applications, for example EMG needles, we can also process other materials, such as tubes of precious metal alloys likes gold and platinum and non-ferrous metals such as brass, nickel, nickel silver, copper, and copper alloys.

High-quality precision tubes can be seamless or welded. We supply both versions with an accuracy of up to +/-0.001 mm, straightened in defined lengths or in coils. We follow international standards and customer requirements.

 Diameter outer
 0.00984" - 0.157"
 0.25 - 4 mm

 Diameter inner
 0.00197" - 0.114"
 0.05 - 2.9 mm

 Wall thickness
 0.00157" - 0.04"
 0.04 - 1.0 mm

For probes or catheters, it is often important that they are coated with plastics. We can apply different types of insulation or biocompatible materials on the fine tubes. With our multi-layer coating process, a 100% coverage is guaranteed. Pinholes can't emerge with this technology.

Type of Insolation	Temp.	*
Polyurethan V130*	130C°	L
Polyurethan V155*	155C°	L
Polyesterimid W180*	180C°	
Polyesterimid W200	200C°	
Polyimid C300	300C°	
Silicon	200C°	

Adhesive varnish		
Polyvynilbutyral	100C°	L
Polyamid * available in variou L = solderable	180C° s colours,	L

Metals: Gold, Nickel, Platinum, Silver, Tungsten etc

We can apply the same metallic coatings as on the wires. Again, we have the possibility to achieve acid resistance, biocompatibility, or to affect the electrical properties of the tubes. We can electroplate continuous tubes and wires (reel to reel). Our electroplating capabilities are highly efficient and can guarantee coatings to be homogeneous, without porosity (pinholes) or cracks.

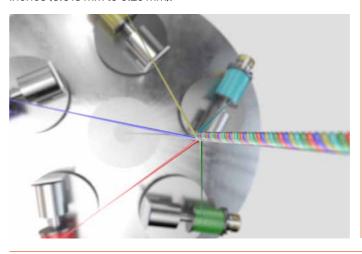
Metals: Gold, Nickel, Platinum, Silver, Tungsten etc

Some applications require that the tube has two or even three different chambers. For this exceptional part, we have developed a special process, that allows us to meet the high requirements of such a product. If desired, the inner conductor can be installed solid or loose in the tube. With the combination of our electroplating and polymeric coating, Alleima has an excellent starting position to realize very complex and sophisticated products. If desired, the inner conductor can be installed solid or loose in the pipe.

Pipe material

Stainless steels

1.4301/AISI304, 1.4306/AISI304L, 1.4404/AISI316L, 1.4435/AISI316LS, 1.4571/AISI316Ti


Challenge yourself. Challenge Alleima.

Our manufacturing portfolio is already uniquely diverse. But why stop there? All our partners are invited to collaborate directly with our engineers to modify, manipulate and imagine new capabilities together. Endless opportunities for process, product and possibilities.

Stranding

The strands are formed by twisting and wrapping together multiple single ended wires or previously joined multifilar wires or cables to form a stranded instead of multifilar entity. The individual single strands that comprise the multifilar cable can be bare or individually coated prior to cabling. The overall stranded cable can also be overcoated with a polymer or PTFE after the cabling operation.

The range for single ended cable diameter is 0.0007 to 0.010 inches (0.018 mm to 0.25 mm).

Lead finishing

We offer stripping and forming of wire ends.

Mechanical assembly

We support you by assembling single strands and cables according to your requirements. We can also make assemblies in our Class 7 clean room.

Automating processes

Based on your needs, we can develop and automate your manufacturing process. For example, we offer cut to length, straightening, and packaging services, to mention a few.

Realize your ideas faster

Experience and expertise unlock new efficiencies. Like being able to make value-adding suggestions without having to re-start the prototyping stage. Or finding recommendations so innovative they're not even on a customer's radar. Yet. From initial design to refining and validating the final product, your entire Alleima team is committed to optimized development that gets your devices to market. Fast.

An overview of services and value-added operations

Wire and Tube refinement

Reduction Drawing

Alloy composition
Uniform, cored or multi-lumen

Wire Round and Rectangular

Tube

Seamless or Welded

Wire

Size: 0.0002"-0.040" / 0.100 mm-1.0 mm Tolerance up to: 0.00005 in / 0.00127 mm

Tube

Diameter outer: 0.00984"-0.157" / 0.25-4 mm Diameter inner: 0.00197"-0.114" / 0.05-2.9 mm Wall thickness: 0.00157"-0.04" / 0.04-1.0 mm

Surface treatment

Coatings

Insultation coatings Bondable coatings ETFE coatings

Electroplating

Reel-to-reel, rack and barrel. Typical metals are; Silver, rhodium... nickel. For all metal capabilities please see www.alleima.com/plating

Anodizing

Aluminum and titanium oxide

Electropolishing

Premium Surface Finishes

Value added operations

Special handeling

Clean Room Processing

Cut to length

Single Strand and Cable

Coiling

Freestanding and Helicoil

Packaging

Spools and Bobbins

Mechanical assembly

Single Strand and Cable

Lead finishing

Stripping and Forming

Twisting and stranding

Custom Cable Solutions

Straightening

Mechanical or Thermal Treatment

Operational services

Research and development

Custom Process/
Product Development

Inventory management

Safety Stock Programs

Metallurgy consulting

Materials Selection Assistance

New product development

Custom process development in accordance with customers specifications

Lab testir

Unique Procedural Competance

Lean process optimization

Kanban Applications

Rapid prototyping

Custom wire and wire-component solutions
Micro-tube solutions

Techincal training

3D Design, 3D Visualization and Printing

Samples

Sample package Round and Rectangular

Developer kitRound and Rectangular

Nitinol processing

The smart memory metal nitinol is named after its place of discovery, the research facility: Nickel Titanium Naval Ordnance Laboratory. When the material is deformed in a cool state, it returns to its original shape after heating. It makes it ideal to use in the medical applications of the future.

Expertise in processing the memory metal

Nitinol requires material expertise and special processing treatment to maintain its unique temperature-dependent properties for medical applications. When inadequately processed, significant cost, wear or irreversible damages on the device may occur.

With more than 20 years of experience in processing nitinol we target both – cost-effective processing and unleashing the unique mechanical properties of nitinol. Our services span across solving complex design challenges, developing and manufacturing innovative, complex and high-quality products.

We offer grinding for fine finishing with accurate dimensions, braiding for flexibility and strength of your device, shaping of complex, customized geometries, joining nitinol with other materials and final cleanroom assembly.

Extreme flexible and biomechanical

Nitinol is kink-resistant and flexible, making it suitable for use in endoluminal instruments such as retrieval baskets. The baskets are extremely flexible. They allow easy access combined with high kink resistance, high set-up force and 1-to-1 motion transmission.

Nitinol's biomechanical properties are also similar to biological material from a mechanical point of view. This makes it particularly suitable for use in implants. Materials such as stainless steel or titanium are very stiff and hardly elastic, so they do not yield even under pressure from surrounding tissue. Nitinol, on the other hand, with its biomechanical properties like human tissue, allows repeatable alternating stresses.

Endoscopy and soft robotics

"The super elastic properties don't need heat. You constrain, you crimp, you pull through a tube. Then you push it into the body. The system of tubes in the body is very complicated and very long, and we don't want to cut open the body until we get to the point of interest. We want to go endoscopically. That's why endoscopic instruments are getting small in diameter, longer, more flexible, and softer", says Dr Bernd Vogel, Global Technology and Innovation Manager at Alleima and an expert in processing nitinol. "

Crimping is an effective joining technique for nitinol wire, meaning it can be connected to other nitinol components or different materials, such as stainless steel.

For more information please visit our website www.alleima.com/nitinol

18

NEMA MW 1000: Dimensional standards

Insulated round magnet wire

0,00027 0,00028 0,00029

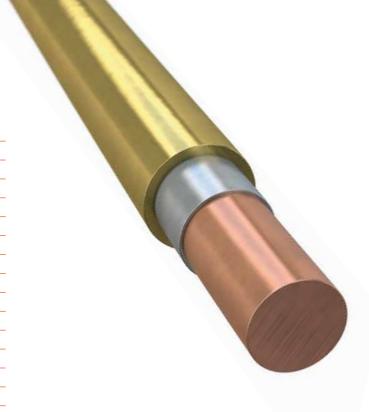
0,00021 0,00022 0,00023

	Bare wire diameter (inches)			Cinalo build in	oulation		Hoove, build in	oulation		Triple build insulation			
AWG	Minimum		Maximum	Min. Increase	Nominal	Maximum	Min. Increase	Nominal	Maximum	Min. Increase	Nominal	Maximum	
	0.0000	0.0005	0.0000	in Diameter	Thickness	Thickness	in Diameter	Thickness	Thickness	in Diameter	Thickness	Thickness	
21	0.0282	0.0285	0.0288	0.0011	0.0298	0.0303	0.0022	0.0309	0.0314	0.0033	0.0321	0.0326	
22	0.0250	0.0253	0.0256	0.0011	0.0266	0.0270	0.0021	0.0276	0.0281	0.0032	0.0288	0.0293	
23	0.0224	0.0226	0.0228	0.0010	0.0239	0.0243	0.0020	0.0249	0.0253	0.0030	0.0259	0.0264	
24	0.0199	0.0201	0.0203	0.0010	0.0213	0.0217	0.0019	0.0223	0.0227	0.0029	0.0233	0.0238	
25	0.0177	0.0179	0.0181	0.0009	0.0190	0.0194	0.0018	0.0199	0.0203	0.0027	0.0209	0.0214	
26	0.0157	0.0159	0.0161	0.0009	0.0170	0.0173	0.0017	0.0178	0.0182	0.0026	0.0188	0.0193	
27	0.0141	0.0142	0.0143	0.0008	0.0153	0.0156	0.0016	0.0161	0.0164	0.0024	0.0169	0.0173	
28	0.0125	0.0126	0.0127	0.0008	0.0137	0.0140	0.0016	0.0144	0.0147	0.0023	0.0152	0.0156	
29	0.0112	0.0113	0.0114	0.0007	0.0123	0.0126	0.0015	0.0130	0.0133	0.0022	0.0138	0.0142	
30	0.0099	0.0100	0.0101	0.0007	0.0109	0.0112	0.0014	0.0116	0.0119	0.0021	0.0124	0.0128	
31	0.0088	0.0089	0.0090	0.0006	0.0097	0.0100	0.0013	0.0105	0.0108	0.0017	0.0110	0.0114	
32	0.0079	0.0080	0.0081	0.0006	0.0088	0.0091	0.0012	0.0095	0.0098	0.0016	0.0099	0.0103	
33	0.0070	0.0071	0.0072	0.0005	0.0078	0.0081	0.0011	0.0085	0.0088	0.0014	0.0088	0.0092	
34	0.0062	0.0063	0.0064	0.0005	0.0070	0.0072	0.0010	0.0075	0.0078	0.0013	0.0079	0.0082	
35	0.0055	0.0056	0.0057	0.0004	0.0062	0.0064	0.0009	0.0067	0.0070	0.0012	0.0071	0.0074	
36	0.0049	0.0050	0.0051	0.0004	0.0056	0.0058	0.0008	0.0060	0.0063	0.0011	0.0064	0.0067	
37	0.0044	0.0045	0.0046	0.0003	0.0050	0.0052	0.0008	0.0055	0.0057	0.0010	0.0057	0.0060	
38	0.0039	0.0040	0.0041	0.0003	0.0045	0.0047	0.0007	0.0049	0.0051	0.0009	0.0051	0.0054	
39	0.0034	0.0035	0.0036	0.0002	0.0039	0.0041	0.0006	0.0043	0.0045	0.0008	0.0045	0.0048	
40	0.0030	0.0031	0.0032	0.0002	0.0035	0.0037	0.0006	0.0038	0.0040	0.0008	0.0041	0.0043	
41	0.0027	0.0028	0.0029	0.0002	0.0031	0.0033	0.0005	0.0034	0.0036	0.0007	0.0037	0.0039	
42	0.0024	0.0025	0.0026	0.0002	0.0028	0.0030	0.0004	0.0030	0.0032	0.0007	0.0033	0.0035	
43	0.0021	0.0022	0.0023	0.0002	0.0025	0.0026	0.0004	0.0027	0.0029	0.0006	0.0030	0.0032	
44	0.0019	0.0020	0.0021	0.0001	0.0022	0.0024	0.0004	0.0025	0.0027	0.0006	0.0027	0.0029	
45	0.00169	0.00176	0.0018	0.00010	0.0019	0.00205	0.00030	0.00215	0.00230				
46	0.00151	0.00157	0.0016	0.00010	0.0017	0.00185	0.00030	0.00196	0.00210	_			
47	0.00135	0.00140	0.0015	0.00010	0.0016	0.00170	0.00030	0.00178	0.00190	-			
48	0.00119	0.00124	0.0013	0.00010	0.0014	0.00150	0.00020	0.00155	0.00170	-			
49	0.00107	0.00111	0.0012	0.00010	0.0012	0.00130	0.00020	0.00139	0.00150	-			
50	0.00095	0.00099	0.00103	0.00010	0.0011	0.00120	0.00020	0.00128	0.00140	-			
51	0.00085	0.00088	0.00092	0.00010	0.0010	0.00110	0.00020	0.00117	0.00129	-			
52	0.00075	0.00078	0.00081	0.00010	0.0009	0.00100	0.00020	0.00105	0.00115	-			
53	0.00067	0.00070	0.00073	0.00005	0.0008	0.00085	0.00013	0.00092	0.00103	-			
54	0.00060	0.00062	0.00065	0.00005	0.0007	0.00075	0.00013	0.00084	0.00095	_			
55	0.00053	0.00055	0.00057	0.00005	0.0006	0.00070	0.00013	0.00077	0.00087	-			
56	0.00047	0.00049	0.00051	0.00005	0.0006	0.00065	0.00013	0.00071	0.00081	-			
57	0.00042	0.00044	0.00046	0.00004	0.0005	0.00056				-			
58	0.00038	0.00039	0.00041	0.00004	0.0005	0.00051	-						
59	0,00034	0,00035	0,00036				_						
60	0,00030	0,00031	0,00032	-									
	-,00000	_,00001	-,00002	-									

Sizes finer than 44 AWG based on the theoretical resistance (10.371 Ohms-Circular Mil/foot) of a copper conductor.

The nominal coated wire thickness is based on the average of the minimum coating thickness increase on a minimum bare wire diameter and the maximum coated wire thickness.

Single build self-bonding wire


AWG	Bare Wire nominal diameter			Maximum increase in diameter insulation		ease nermopLastic	Maximum ove	Maximum overall diameter		
	Inches	mm	Inches	mm	Inches	mm	Inches	mm		
21	0.02850	0.7240	0.0011	0.0280	0.00050	0.0130	0.03140	0.7980		
22	0.02530	0.6430	0.0011	0.0280	0.00050	0.0130	0.02810	0.7140		
23	0.02260	0.5740	0.0010	0.0250	0.00050	0.0130	0.02530	0.6430		
24	0.02010	0.5110	0.0010	0.0250	0.00050	0.0130	0.02270	0.5770		
25	0.01790	0.4550	0.0009	0.0230	0.00050	0.0130	0.02030	0.5160		
26	0.01590	0.4040	0.0009	0.0230	0.00050	0.0130	0.01820	0.4620		
27	0.01420	0.3610	0.0008	0.0200	0.00050	0.0130	0.01640	0.4170		
28	0.01260	0.3200	0.0008	0.0200	0.00050	0.0130	0.01470	0.3730		
29	0.01130	0.2870	0.0007	0.0180	0.00040	0.0100	0.01330	0.3380		
30	0.01000	0.2540	0.0007	0.0180	0.00040	0.0100	0.01190	0.3020		
31	0.00890	0.2260	0.0006	0.0150	0.00040	0.0100	0.01080	0.2740		
32	0.00800	0.2030	0.0006	0.0150	0.00040	0.0100	0.00980	0.2490		
33	0.00710	0.1800	0.0005	0.0130	0.00040	0.0100	0.00880	0.2240		
34	0.00630	0.1600	0.0005	0.0130	0.00030	0.0080	0.00780	0.1980		
35	0.00560	0.1420	0.0004	0.0100	0.00030	0.0080	0.00700	0.1780		
36	0.00500	0.1270	0.0004	0.0100	0.00030	0.0080	0.00630	0.1600		
37	0.00450	0.1140	0.0003	0.0080	0.00030	0.0080	0.00570	0.1450		
38	0.00400	0.1020	0.0003	0.0080	0.00020	0.0050	0.00510	0.1300		
39	0.00350	0.0890	0.0002	0.0050	0.00020	0.0050	0.00450	0.1140		
10	0.00310	0.0790	0.0002	0.0050	0.00020	0.0050	0.00400	0.1020		
41	0.00280	0.0710	0.0002	0.0050	0.00020	0.0050	0.00360	0.0910		
42	0.00250	0.0640	0.0002	0.0050	0.00020	0.0050	0.00320	0.0810		
43	0.00220	0.0560	0.0002	0.0050	0.00010	0.0025	0.00290	0.0740		
14	0.00200	0.0510	0.0001	0.0025	0.00010	0.0025	0.00270	0.0690		
1 5	0.00176	0.0447	0.0001	0.0025	0.00010	0.0025	0.00230	0.0584		
16	0.00157	0.0399	0.0001	0.0025	0.00010	0.0025	0.00210	0.0533		
17	0.00140	0.0356	0.0001	0.0025	0.00010	0.0025	0.00190	0.0483		
48	0.00124	0.0315	0.0001	0.0025	0.00010	0.0025	0.00170	0.0432		
19	0.00111	0.0282	0.0001	0.0025	0.00010	0.0025	0.00150	0.0381		
50	0.00099	0.0251	0.0001	0.0025	0.00010	0.0025	0.00140	0.0356		
51	0.00088	0.0224	0.0001	0.0025	0.00010	0.0025	0.00130	0.0330		
52	0.00078	0.0198	0.0001	0.0025	0.00005	0.0013	0.00115	0.0292		
53	0.00070	0.0178	0.0001	0.0025	0.00005	0.0013	0.00107	0.0271		
54	0.00060	0.0152	0.0001	0.0025	0.00005	0.0013	0.000995	0.0253		
55	0.00050	0.0127	0.0001	0.0025	0.00005	0.0013	0.000985	0.0250		
56	0.00040	0.0102	0.0001	0.0025	0.00005	0.0013	0.000975	0.0248		

Sizes finer than 44 AWG based on the theoretical resistance (10.371 Ohms-Circular Mil/foot) of a copper conductor.

AWG sizes 53 to 56 are not standard NEMA dimensions.

Wire gauges

Wire Gauges (AWG or B&S) Gauge no inch mm					auge (SWG)
Gauge no			inch	mm	Gauge no
4-0	0.460	11.68	0.400	10.16	4-0
3-0	0.410	10.40	0.372	9.45	3-0
2-0	0.365	9.27	0.348	8.84	2-0
0	0.325	8.25	0.324	8.23	0
1	0.289	7.35	0.300	7.62	1
2	0.258	6.54	0.276	7.01	2
3	0.229	5.83	0.252	6.40	3
4	0.204	5.19	0.232	5.89	4
5	0.182	4.62	0.212	5.38	5
6	0.162	4.11	0.192	4.88	6
7	0.144	3.67	0.176	4.47	7
8	0.129	3.26	0.160	4.06	8
9	0.114	2.91	0.144	3.66	9
10	0.102	2.59	0.128	3.25	10
11	0.0907	2.30	0.116	2.95	11
12	0.0808	2.05	0.104	2.64	12
13	0.0720	1.83	0.0920	2.34	13
14	0.0641	1.63	0.0800	2.03	14
15	0.0571	1.45	0.0720	1.83	15
16	0.0508	1.29	0.0640	1.63	16
17	0.0453	1.15	0.0560	1.42	17
18	0.0403	1.02	0.0480	1.22	18
19	0.0359	0.912	0.0400	1.02	19
20	0.0320	0.812	0.0360	0.914	20
21	0.0285	0.723	0.0320	0.813	21
22	0.0254	0.644	0.0280	0.711	22
23	0.0226	0.573	0.0240	0.610	23
24	0.0201	0.511	0.0220	0.559	24
25	0.0179	0.455	0.0200	0.508	25
26	0.0159	0.405	0.0180	0.457	26
27	0.0142	0.361	0.0164	0.417	27
28	0.0126	0.321	0.0148	0.376	28
29	0.0113	0.286	0.0136	0.345	29
30	0.0100	0.255	0.0124	0.315	30
31	0.00893	0.227	0.0116	0.295	31
32	0.00795	0.202	0.0108	0.274	32
33	0.00708	0.180	0.0100	0.254	33
34	0.00631	0.160	0.00920	0.234	34
35	0.00562	0.143	0.00320	0.213	35
36	0.00500	0.143	0.00760	0.193	36
37	0.00300	0.113	0.00680	0.173	37
38	0.00397	0.101	0.00600	0.152	38

39	0.00353	0.0897	0.00520	0.132	39
40	0.00315	0.0799	0.00480	0.122	40
41	0.00280	0.0711	0.00440	0.112	41
42	0.00249	0.0633	0.00400	0.102	42
43	0.00222	0.0564	0.00360	0.0914	43
44	0.00198	0.0502	0.00320	0.0813	44
45	0.00176	0.0447	0.00280	0.0711	45
46	0.00157	0.0398	0.00240	0.0610	46
47	0.00140	0.0355	0.00200	0.0508	47
48	0.00124	0.0316	0.00160	0.0406	48
49	0.00111	0.0281	0.00120	0.0305	49
50	0.000986	0.0250	0.00100	0.0254	50
51	0.000800	0.0203	0.000878	0.0223	51
52	0.000600	0.0152	0.000782	0.0199	52
53	0.000500	0.0127	0.000697	0.0177	53
54	0.000400	0.0102	0.000620	0.0157	54
55	0.000300	0.00762	0.000552	0.0140	55
56			0.000492	0.0125	56

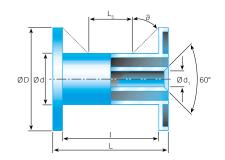
 0.000347
 0.00881

 0.000309
 0.00785

58

inch

Standard Wire Gauge (SWG)


Wire Gauges (AWG or B&S)

59

Spools

American standard

Spool Type	D in	d in	d1 in	Lin	lin	Wire type
2.125" Flange	2.125	1.375	5/8	1.375	1	0.0005 - 0.002
2.5 " Flange	2.5	1.76	5/8	3.376	3	0.007 - 0.0031
3.15" Flange	3.15	1.97	5/8	3.15	2.52	0.002 - 0.0063
3.5" Flange	3.5	2.125	2.125	2.438	2.125	
5" Flange	5	3	5/8	4.11	3.5	0.0035 - 0.113
6" Flange	6	3.5	5/8	4.11	3.5	0.005 - 0.0253
PT 4 Tapered	5.5 & 4.875	4.375 & 3.875	1	7.875	6.688	0.003 - 0.008
PT10 Tapered	7.087 X 6.300	4.331 X 3.780	1	9	7.875	0.004 - 0.010
12" Reel	11.75	8	2	3.938	3.62	
Anodized Band Spool	2.24	1.98	1.93	1.1	1	Bonding wire

Metric

Spool Type	D mm	d mm	d1 mm	L mm	Imm	Wire size, mm ø	Normal net weight, kg
C 1/4	64	44	16	61	51	<0.030	0.05 - 0.25
C 1/2	64	44	16	86	76	0.030 - 0.099	0.5
B1	75	40	16	120	100	0.1 – 0.199	1.0
B2	90	40	16	120	100	0.20 - 0.25	2.0
B4	120	50	16	120	100	0.26 - 0.50	4.0

Standard din spools

Spool Type	D mm	d mm	d1 mm	L mm	Imm	Wire size, mm ø	Normal net weight, kg
DIN 50	50	32	11	50	38	0.015 - 0.04	0.10
DIN 63	63	40	11	63	49	0.015 - 0.04	0.20
DIN 80	80	50	16	80	64	0.05 - 0.099	0.75
DIN 100	100	63	16	100	80	0.10 - 0.50	1.5
DIN 125	125	80	16	125	100	0.15 - 0.80	3.0
DIN 160	160	100	22	160	128	0.25 - 0.71	5.0
DIN 200	200	125	36	200	160	0.4 - 0.81	10.0
DIN 250	250	160	22	200	160	0.4 – 1.5	20
DIN 355	355	225	36	200	162	1.0 – 3.0	40
SK 460	460	318	305	105	91	0.25 – 1.8	45

Steeger bobbins

Sizes D / d x I

40 / 30 x 26 mm 40 / 16 x 26 mm 43 / 25 x 26 mm

Other spool options available

Forged from the past. Engineered for the future.

One partner for all your needs

Your sounding board. Your partner. Work with us and take advantage of the finest quality products for medical wire and micro-tubes, nitinol processing, a completely controlled value chain and all the time and cost efficiencies of a single, reliable supplier.

- Partnering with world-class OEMs
- Agile lead times
- Expertly responsive customer service
- Fine medical wire and micro-tubes with highest precision and quality
- Highest quality medical coatings
- Experts in nitinol processing

ISO 13485:2016 ISO 9001:2015

ISO 14001:2015 ISO 45001:2018 Our name has changed to Alleima. Yet our long, rich Sandvik history will always burn strong in our hearts. From pioneering malleable steel to perfecting the Bessemer method, ours has always been a story of progress and development. And today, as the world-leader in materials engineering and manipulation, we are committed to advancing industries through materials technology.

Eight ways you'll advance with Alleima

A truly innovative partner

Have all our research and development expertise on your side, enhancing your team with innovative thinking and action.

Unmatched material science expertise

Give each of your projects the benefit of unrivaled metallurgy and medical wire expertise.

New standards in service

Get the service and flexibility you deserve, with a responsive partner ready to adjust to your design and production schedules, however demanding they might be.

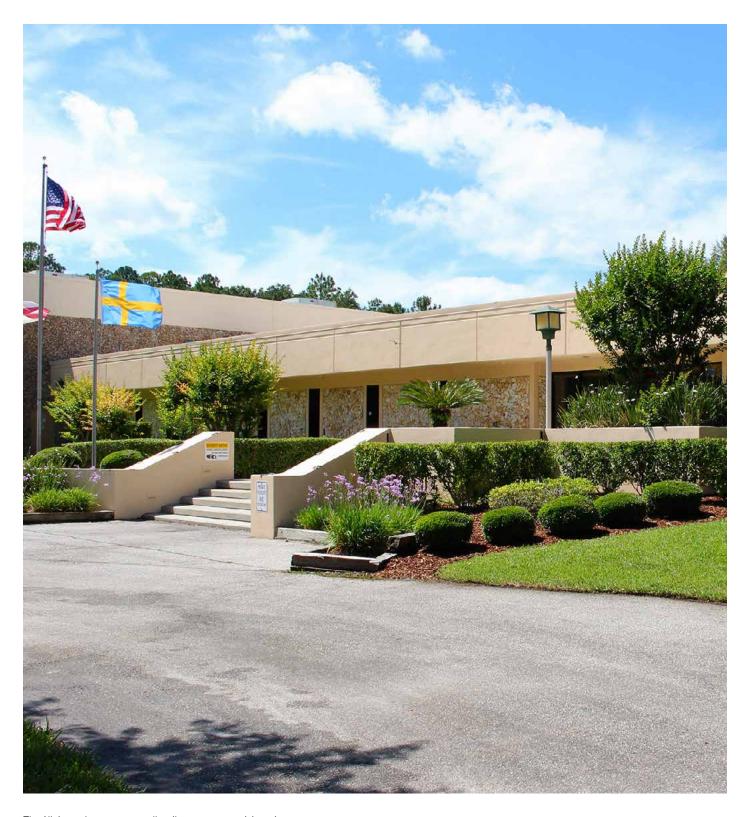
Financial strength

Achieve long-term sustainable growth by teaming with a financially strong, single-source partner.

Quality assurance to trust

Know we have control of the entire value chain, from melt shop to the most precise end-product.

Lean processes


Benefit from our continuous journey to increase quality, improve processes, reduce waste and decrease variability.

Focus and priority

Know we work closely with every project and order, from development stage to mass production.

Value-adding capabilities

Trust that we'll add value at every stage - not only through cut-to-length orders, twisted leads, micro cables, thermocouple sensors, coils and more - but with our service.

The Alleima advantage: a small, agile, custom, precision wire manufacturer, backed by the globally integrated and resource rich Alleima Group.

Palm Coast 1 Commerce Blvd Palm Coast, FL 321 64 USA sales.pc@alleima.com

www.alleima.com/medical

Tuscon 2424 E. Aragon Road Tucson, AZ 85756 USA sales.pc@alleima.com Karlsruhe Wilhelm-Schickard-Str. 9c 76131 Karlsruhe Germany sales.ka@alleima.com Sonceboz Sur le Brassiège 3 2605 Sonceboz-Sombeval Switzerland sales.sb@alleima.com

